导师风采
庞国飞
浏览量:594   转发量:2

个人信息

Personal Information

  • 副研究员
  • 导师类别:硕士生导师
  • 性别: 男
  • 学历:博士研究生
  • 学位:博士

联系方式

Contact Information

  • 所属院系:数学学院
  • 所属专业: 数学
  • 邮箱 : guofei_pang@seu.edu.cn
  • 工作电话 : -

个人简介

Personal Profile

        庞国飞,男,中共党员,副研究员,硕士生导师,院长助理,计算数学系副主任。本科和博士分别毕业于河海大学数学系和工程力学系,曾在布朗大学应用数学部从事博士后研究工作。研究课题涉及计算数学、应用数学、统计和计算力学。主要研究方向为统计机器学习的应用及其数学理论、科学计算中的机器学习方法、智能流体力学。 目前已在SIAM Journal on Scientific Computing、Journal of Computational Physics、Nature Machine Intelligence,Physics of Fluids等计算数学/力学和机器学习领域的期刊上发表论文20余篇,参与撰写专著一部,书籍章节三篇,主持国家自然基金青年基金一项,教育部重点实验室开放基金两项、GF横向课题一项。 

      讲授面上本科生课程《数学建模与数学实验》、学院专业课《数据结构与算法》和学院专业课《机器学习》,获得东南大学2024“全校最受欢迎老师"提名。 

     工作经历: 2021/03 - 至今 东南大学数学学院 副研究员; 2018/01 - 2020/08 布朗大学应用数学部 博士后; 2015/12 - 2017/12 北京计算科学研究中心 博士后; 2011/07 - 2012/06 香港大学机械工程系 研究助理。教育经历: 2010/09 - 2015/11 河海大学工程力学系 博士; 2006/09 - 2010/06 河海大学数学系 学士。



  • 研究方向Research Directions
统计机器学习及其数学理论,智能流体力学,科学计算中的机器学习方法
科研项目

1. 主持国家自然基金青年基金:分数阶导数对流-弥散方程参数识别的多重精度高斯过程回归算法(11701025),20万, 2018/01 - 2020/12;

2. 主持东南大学学科攀升计划专项经费——理科专项,40万, 2021;

3. 主持河海大学教育部重点实验室开放基金两项:2022-2024(4万), 2024-2025(5万);

4. 主持GF横向项目一项,92万,2024-2025.


研究成果

期刊论文

[30]Zhai, R., Yin, D., Pang, G.* (2023). A deep learning framework for solving forward and inverse problems of power-law fluids. Physics of Fluids, 35(9).

[29]Deng, N., Cao, W.*, Pang, G. (2022). On numerical methods to second-order singular initial value problems with additive white noise. Journal of Computational and Applied Mathematics, 416, 114539.

[28] Xin Zhao*, Xiaokai Nie, G. Pang, et al. Prior Distribution Estimation of Monitored Information in the Intensive Care Unit with the Hidden Markov Model and Decision Tree Methods. Journal of Healthcare Engineering, 2022.

[28]  Guofei Pang*, Wanrong Cao (2021). Pseudo-Likelihood Estimation for Parameters of Stochastic Time-Fractional Diffusion Equations. Fractal Fract.  5, 129. https://doi.org/10.3390/fractalfract5030129.

[27] Lu, Lu, Pengzhan, Jin, Guofei Pang, Zhongqiang, Zhang, George, Karnaidakis*. (2021) Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators, Nature Machine Intelligence, 3(3),218-229.

[26] Enrui Zhang, Guofei Pang, Ming Dao*, George Karniadakis*, Subra Suresh. Detecting Voids and Inclusions in Hyperelastic Solids with Physics-Informed Neural Networks, submitted.

[25] Guofei, Pang, Marta, D'Elia*, Michael, Parks, and George, E. Karniadakis. "nPINNs: nonlocal Physics-Informed Neural Networks for a parametrized nonlocal universal Laplacian operator. Algorithms and Applications." Journal of Computational Physics 422(2020):109760.

[24] Mehta, PavanPranjivan,Guofei, Pang*, Fangying, Song, and George, Em Karniadakis. "Discovering a universal variable-order fractional model for turbulent Couette flow using a physics-informed neural network." Fractional Calculus and Applied Analysis 22, no. 6 (2019): 1675-1688.

[23] Guofei, Pang, Lu Lu, and George Em Karniadakis*. "fpinns: Fractional physics-informed neural networks." SIAM Journal on Scientific Computing 41.4 (2019): A2603-A2626.

[22] Guofei, Pang, Liu Yang, and George Em Karniadakis*. "Neural-net-induced Gaussian process regression for function approximation and PDE solution." Journal of Computational Physics 384 (2019): 270-288.

[21] Xu, Yiran, Jingye Li, Xiaohong Chen, and Guofei Pang*. "Solving fractional Laplacian visco-acoustic wave equations on complex-geometry domains using Grünwald-formula based radial basis collocation method." Computers & Mathematics with Applications (2019).

[20]Lischke, A., Pang, G (共同一作) , Gulian, M., Song, F., Glusa, C., Zheng, X., Mao, Z., Cai, W., Meerschaert, M.M., Ainsworth, M. and Karniadakis, G.E.*. “What is the fractional Laplacian? A comparative review with new results.” Journal of Computational Physics 404 (2020): 109009. 

[19] Guofei, Pang, Paris, Perdikaris, Wei, Cai, and George, Em Karniadakis. "Discovering variable fractional orders of advection–dispersion equations from field data using multi-fidelity Bayesian optimization." Journal of Computational Physics 348 (2017): 694-714.

[18] Guofei, Pang, Wen Chen*, and Zhuojia Fu. "Space-fractional advection–dispersion equations by the Kansa method." Journal of Computational Physics 293 (2015): 280-296.

[17] Guofei, Pang, Wen Chen*, and K. Y. Sze. "Gauss–Jacobi-type quadrature rules for fractional directional integrals." Computers & Mathematics with Applications 66.5 (2013): 597-607.

[16] Guofei, Pang, Wen, Chen*., & K. Y. Sze (2014). Differential quadrature and cubature methods for steady-state space-fractional advection-diffusion equations. Comput. Model. Eng. Sci, 97, 299-322.

[15] Guofei, Pang, and Wen, Chen*. "Symmetric singular boundary method for potential problems with mixed boundary conditions." Engineering Analysis with Boundary Elements 56 (2015): 49-56.

[14] Guofei, Pang, Wen, Chen*, and K. Y. Sze. "A comparative study of finite element and finite difference methods for two-dimensional space-fractional advection-dispersion equation." Advances in Applied Mathematics and Mechanics 8.1 (2016): 166-186.

[13] 庞国飞, 陈文*, 张晓棣, & 孙洪广. (2015). 复杂介质中扩散和耗散行为的分数阶导数唯象建模. 应用数学和力学, (1000-0887), 36(11).

[12] 庞国飞,陈文*. (2017). 基于 Riesz 势空间分数阶算子的非局部粘弹性力学元件. 固体力学学报, 38(1), 47-54.

[11]Mamikon, Gulian*, and Guofei, Pang. "Stochastic Solution of Elliptic and Parabolic Boundary Value Problems for the Spectral Fractional Laplacian." arXiv preprint arXiv:1812.01206 (2018).

[10] Chen, Wen*, and Guofei, Pang. "A new definition of fractional Laplacian with application to modeling three-dimensional nonlocal heat conduction." Journal of Computational Physics 309 (2016): 350-367.

[9] 李源, 陈文*, 庞国飞. (2014). 应用分数阶导数模拟桩屏障对粘弹性 SH 波的隔离. 应用数学和力学, 35(9), 949-958.

[8] Li, Weiwei, Wen Chen*, and Guofei Pang. "Singular boundary method for acoustic eigenanalysis." Computers & Mathematics with Applications 72.3 (2016): 663-674.

[7] Sun, H., Liu, X., Zhang, Y., Pang, Guofei., & Garrard, R. (2017). A fast semi-discrete Kansa method to solve the two-dimensional spatiotemporal fractional diffusion equation.Journal of Computational Physics, 345, 74-90.

[6] Chen, W., Fang, J., Pang, Guofei., & Holm, S. (2017). Fractional biharmonic operator equation model for arbitrary frequency-dependent scattering attenuation in acoustic wave propagation. The Journal of the Acoustical Society of America, 141(1), 244-253.

[5] Hei, X., Chen, W., Pang, Guofei., Xiao, R., & Zhang, C. (2018). A new visco–elasto-plastic model via time–space fractional derivative. Mechanics of Time-Dependent Materials, 22(1), 129-141.

书籍和书籍章节

[4] Guofei, Pang, and George Em Karniadakis. “Physics-informed learning machines for PDEs: Gaussian processes versus neural networks.” Emerging Frontiers in Nonlinear Science, 2020.

[3] E Kharazmi, Z Mao, G Pang, M Zayernouri, GE Karniadakis. Fractional calculus and numerical methods for fractional PDEs . First Congress of Greek Mathematicians, 91-126, 2020

[2] Guofei, Pang, Wen Chen. “Comparison of two radial basis collocation methods for poisson problems with fractional Laplacian.” Handbook of Fractional Calculus with Applications. Volume 3: Numerical Methods, 2019

[1] 参与撰写 《反常扩散的分数阶微分方程和统计模型》,科学出版社,2017

软件著作权

陈文、庞国飞、张晓棣,胡帅,非均质介质中声波衰减的数值模拟软件V1.0,申请号2015R11L031085


考生信息
姓名:
手机号码:
邮箱:
毕业院校:
所学专业:
报考类型:
博士
硕士
个人简历:

上传附件

支持扩展名:.rar .zip .doc .docx .pdf .jpg .png .jpeg
成绩单:

上传附件

支持扩展名:.rar .zip .doc .docx .pdf .jpg .png .jpeg
其他材料:

上传附件

支持扩展名:.rar .zip .doc .docx .pdf .jpg .png .jpeg
备注:

东南大学研究生院招生办公室

360eol提供技术支持

Copyright © 2011 -All Rights Reserved 苏ICP备08015343号-4

文件上传中...

分享
回到
首页
回到
顶部