导师风采
陈云飞
浏览量:2846   转发量:4

个人信息

Personal Information

  • 教授
  • 导师类别:硕,博士生导师
  • 性别: 男
  • 学历:博士研究生
  • 学位:博士

联系方式

Contact Information

  • 所属院系:机械工程学院
  • 所属专业: 机械工程  、 机械
  • 邮箱 : yunfeichen@seu.edu.cn
  • 工作电话 : 025-52090518

个人简介

Personal Profile

2009年度国家杰出青年科学基金获得者,2014年教育部长江学者奖励计划特聘教授,入选江苏省第三期“333高层次人才培养工程”第三层次和江苏省第四期、五期“333高层次人才培养工程”第二层次。主要从事机械设计、摩擦学、微纳医疗器械、微纳机电系统等方面的研究工作。做为第一负责人主持完成国家自然科学基金7项,其中5项被评为优,江苏省自然科学基金3项、863MEMS重大专项1项、国家重大基础研究计划1项。目前主持国家自然科学基金重点项目1项,国家重大基础研究计划1项。在《Nature Nanotechnology》《Nano Letters》等国际学术刊物发表SCI收录学术论文100多篇,其中SCI他引4000多次。


  • 研究方向Research Directions
机械设计,摩擦学,微纳制造,微纳传感与控制,蛋白质芯片设计与制造
团队展示


项目情况

目前作为项目首席科学家主持国家重点研发计划项目1项,自然科学基金重点项目1项,仪器项目1项。研究内容涉及:(1)、微纳制造:研制基于纳米孔流体传感器,实现单分子检测,应用于疾病早期检测、基因测序和蛋白质测序。( 2)、微尺度传热:针对高功率芯片、CPU、航空发动机的热防护问题,开展流体动力学和传热、传质基础理论研究和热界面材料研发。 (3)、摩擦学:航空发动机、飞行器的摩擦学问题研究。 (4)、增材制造:光、机、电一体化设计,实现微纳结构增材制造。 (5)、机械动力学:开展机构、结构动力学分析及结构优化设计。


科研项目

项目名称

项目类别

项目时间

工作类别

项目金额

微纳传感与控制

国家杰出青年科学基金

2009-2013


200

纳通道内生物分子电信号超灵敏检测方法与原理

国家重大基础研究计划(973)

2011-2015


810

基于多模式信号检测的超灵敏传感器的基础理论与关键技术

国家自然科学基金重点项目

2015-2019


360

家用电器结构优化设计

博西华家用电器公司企业委托项目

2013-2017


270

微纳结构增材制造工艺与装备

国家重点研发计划

2018-2021


450

蛋白质芯片设计与制造国家自然基金重点项目2021-2025
300


研究成果

1.Zhao, W., et al., The Thinnest Light Disk: Rewritable Data Storage and Encryption on WS2 Monolayers. Advanced Functional Materials, 2021.

2.Zhang, X., et al., A general strategy for designing two-dimensional high-efficiency layered thermoelectric materials. Energy & Environmental Science, 2021. 14(7): p. 4059-4066.

3.Yang, L., et al., Observation of superdiffusive phonon transport in aligned atomic chains. Nature Nanotechnology, 2021. 16(7): p. 764-+.

4.Tao, Y., et al., Non-monotonic boundary resistivity for electron transport in metal nanowires. Applied Physics Letters, 2021. 118(15).

5.Qi, H., et al., Synergic Effects of the Nanopore Size and Surface Charge on the Ion Selectivity of Graphene Membranes. Journal of Physical Chemistry C, 2021. 125(1): p. 507-514.

6.Lyu, Z., et al., Design and Manufacture of 3D-Printed Batteries. Joule, 2021. 5(1): p. 89-114.

7.Duan, Z., et al., Resonance in Atomic-Scale Sliding Friction. Nano Letters, 2021. 21(11): p. 4615-4621.

8.Zheng, F., et al., Ion Concentration Effect on Nanoscale Electrospray Modes. Small, 2020. 16(24).

9.Zhao, Y., et al., Experimental measurement of thermal conductivity along different crystallographic planes in graphite. Journal of Applied Physics, 2020. 128(4).

10.Zhang, Y., et al., Electroosmotic Facilitated Protein Capture and Transport through Solid-State Nanopores with Diameter Larger than Length. Small Methods, 2020. 4(11).

11.Zhang, X.W., et al., High ZT 2D Thermoelectrics by Design: Strong Interlayer Vibration and Complete Band-Extrema Alignment. Advanced Functional Materials, 2020. 30(22).

12.Wu, C., et al., Anomalous layer thickness dependent thermal conductivity of Td-WTe2 through first-principles calculation. Physics Letters A, 2020. 384(30).

13.Wei, Z.Y., et al., Significant enhancement of thermal boundary conductance in graphite/Al interface by ion intercalation. International Journal of Heat and Mass Transfer, 2020. 157.

14.Wei, Z.Y., et al., Phonon energy dissipation in friction between graphene/graphene interface. Journal of Applied Physics, 2020. 127(1).

15.Tao, Y., et al., The enhancement of heat conduction across the metal/graphite interface treated with a focused ion beam. Nanoscale, 2020. 12(27): p. 14838-14846.

16.Tao, Y., et al., Theory of aerodynamic heating from molecular collision analysis. Physics Letters A, 2020. 384(4).

17.Tan, X. and J. Luo, Research Advances of Lubrication. China Mechanical Engineering, 2020. 31(2): p. 145.

18.Si, W., et al., Detergent-Assisted Braking of Peptide Translocation through a Single-Layer Molybdenum Disulfide Nanopore. Small Methods, 2020. 4(11).

19.Si, W., et al., Shape characterization and discrimination of single nanoparticles using solid-state nanopores. Analyst, 2020. 145(5): p. 1657-1666.

20.Mo, J.W., et al., Fluid release pressure for micro-/nanoscale rectangular channels. Journal of Applied Physics, 2020. 127(11).

21.Luo, J., Investigation on the origin of friction and superlubricity. Chinese Science Bulletin, 2020. 65(27): p. 2967-2978.

22.Lin, K.B., et al., Charge Inversion and Calcium Gating in Mixtures of Ions in Nanopores. Journal of the American Chemical Society, 2020. 142(6): p. 2925-2934.

23.Li, Z.W., et al., Strong Differential Monovalent Anion Selectivity in Narrow Diameter Carbon Nanotube Porins. Acs Nano, 2020. 14(5): p. 6269-6275.

24.Li, Y.H., et al., Water-ion permselectivity of narrow-diameter carbon nanotubes. Science Advances, 2020. 6(38).

25.Kan, Y.J., et al., Diminishing Cohesion of Chitosan Films in Acidic Solution by Multivalent Metal Cations. Langmuir, 2020. 36(18): p. 4964-4974.


考生信息
姓名:
手机号码:
邮箱:
毕业院校:
所学专业:
报考类型:
博士
硕士
个人简历:

上传附件

支持扩展名:.rar .zip .doc .docx .pdf .jpg .png .jpeg
成绩单:

上传附件

支持扩展名:.rar .zip .doc .docx .pdf .jpg .png .jpeg
其他材料:

上传附件

支持扩展名:.rar .zip .doc .docx .pdf .jpg .png .jpeg
备注:

东南大学研究生院招生办公室

360eol提供技术支持

Copyright © 2011 -All Rights Reserved 苏ICP备08015343号-4

文件上传中...

分享
回到
首页
回到
顶部