个人信息
Personal Information
联系方式
Contact Information
个人简介
Personal Profile
张嘉男,东南大学青年首席教授,博士生导师,国家青年高层次人才(海外),华为“紫金学者”、“江苏科技智库优秀青年人才计划”入选者。长期从事智能电磁计算、电磁超表面逆向设计等方向的研究,主持国家自然科学基金优秀青年基金(海外)、国家自然科学基金青年基金、江苏省自然科学基金青年基金、南京市留学人员科技创新择优资助项目、雷达探测感知全国重点实验室开放课题、中电科创新理论技术群基金、华为横向合作等项目,同时参与国家重点研发计划、JWKJW重点项目等多个国家级重点项目。在IEEE TAP、IEEE TMTT、IEEEE MWTL等国际著名期刊上发表学术论文50余篇,谷歌学术总引用1000余次。授权/受理射频EDA技术相关国家发明专利8项、美国专利1项。受邀参加国际国内会议作邀请报告十余次,长期担任IEEE TMTT,IEEE AWPL, IEEE TCAS-I和IEEE MWTL等国际著名期刊审稿人。
国家级:
(1)国家自然科学基金,电磁计算与射频EDA仿真技术,在研,主持。
(2)国家自然科学基金青年基金,基于双精度网格变形与并行空间映射的超表面快速设计优化方法,30万元,在研,主持。
(3)江苏省自然科学基金青年基金, 面向高频微波器件成品率驱动设计的先进统计建模和优化技术, 20万元, 2022.07.01-2025.06.31,在研, 主持。
(4)南京市留学人员科技创新择优资助项目,智能电磁建模与微波EDA技术,3万元,2025.01.01-2027.12.31,在研,主持。
(5)中电十所创新理论技术群基金,大掠入射角频选电磁结构设计,2024.09.30-2025.12.31,36万元,在研,主持。
(6)雷达探测感知全国重点实验室开放课题,面向频率选择表面天线罩快速设计的替代建模及优化方法研究,2026.03-2027.02,30万元,主持。
(7)华为技术有限公司,Meta分频聚焦,80万元,在研,主持。
(8)JWKJW,JWKJW基础加强项目课题,全空域****,420万元,在研,参与。
(9)国家重点研发计划,“诊疗装备与生物医用材料”重点专项,临床专科化小视野磁共振显微成像技术研究及样机研制,2050万元,在研,参与,子课题负责人。
(10)中央高校优秀青年团队,可编程超表面和量子编码超表面,400万元,在研,参与。
代表性学术论文:(*代表通讯作者)
[1]J. N. Zhang, F. Feng, Q. J. Zhang, “Quantum computing method for solving electromagnetic problems based on the finite element method”, IEEE Trans. Microw. Theory Techn., vol. 72, no. 2, pp. 948-965, Feb. 2024.
[2]J. W. Zhang, Z. Zhang*, J. N. Zhang*, J. W. Wu, J. Y. Dai, Q. Cheng, Q. S. Cheng, and T. J. Cui, “A novel two-stage optimization framework for designing active metasurfaces based on multi-port microwave network theory,” IEEE Trans. Antennas propag., vol. 72, no. 2, pp. 1603-1616, Feb. 2024.
[3]Z Fang, Q. Zhou, J. Y. Dai, Z. J. Qi, J. N. Zhang*, Q. Cheng, and T. J. Cui*, “DOA estimation method based on space-time coding antenna with orthogonal codes,” IEEE Trans. Antennas Propag., vol. 72, no. 2, pp. 1173-1181, Feb. 2024.
[4]J. N. Zhang, J. W. You, F Feng, W. Na, Z. C. Lou, Q. J. Zhang, T. J. Cui, “Physics-driven machine-learning approach incorporating temporal coupled mode theory for intelligent design of metasurfaces”, IEEE Trans. Microw. Theory Techn., vol. 71, no. 7, pp. 2875-2887, Jul. 2023.
[5]J. N. Zhang, S. Yan, F. Feng, J. Jin, W. Zhang, J. Wang, Q. J. Zhang, “A novel surrogate-based approach to yield estimation and optimization of microwave structures using combined quadratic mappings and matrix transfer functions,” IEEE Trans. Microw. Theory Techn., 2022, 70(8): 3802-3816. (入选IEEE TMTT Popular Articles)
[6]J. N. Zhang, F. Feng, J. Jin, and Q. J. Zhang, “Adaptively weighted yield-driven EM optimization incorporating neuro-transfer function surrogate with applications to microwave filters,” IEEE Trans. Microw. Theory Techn., vol. 69, no. 1, pp. 518-528, Jan. 2021.
[7]J. N. Zhang, F. Feng, W. Zhang, J. Jin, J. Ma, and Q. J. Zhang, “A novel training approach for parametric modeling of microwave passive components using Pade via Lanczos and EM sensitivities,” IEEE Trans. Microw. Theory Techn., vol. 68, no. 6, pp. 2215-2233, Jun. 2020.
[8]J. N. Zhang, C. Zhang, F. Feng, W. Zhang, J. Ma, and Q. J. Zhang, “Polynomial chaos-based approach to yield-driven EM optimization,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 7, pp. 3186-3199, Jul. 2018.(入选IEEE TMTT Popular Articles)
[9]J. N. Zhang, J. Chen, Q. Guo, W. Liu, F. Feng, and Q. J. Zhang, “Parameterized modeling incorporating MOR-based rational transfer functions with neural networks for microwave components,” IEEE Microw. Wireless Compon. Lett., vol. 32, no. 5, pp. 379-382, May 2022.
[10]J. N. Zhang, F. Feng, and Q. J. Zhang, “Rapid yield estimation of microwave passive components using model-order reduction based neuro-transfer function models,” IEEE Microw. Wireless Compon. Lett., vol. 31, no. 4, pp. 333-336, Apr. 2021.(入选IEEE MWCL Popular Articles)
[11]J. N. Zhang, F. Feng, J. Jin, and Q. J. Zhang, “Efficient yield estimation of microwave structures using mesh deformation-incorporated space mapping surrogates,” IEEE Microw. Wireless Compon. Lett., vol. 30, no. 10, pp. 937-940, Oct. 2020.(入选IEEE MWCL Popular Articles)
[12]F. Feng, J. Xue, J. N. Zhang*,M. Li, W. Liu, and Q. J. Zhang, “Concise and compatible MOR-based self-adjoint EM sensitivity analysis for fast frequency sweep,” IEEE Trans. Microw. Theory Techn., vol. 71, no. 9, pp. 3829-3840, Sept. 2023.
[13]W. Na, K. Liu, J. N. Zhang*, D. Jin, H. Xie, and W. Zhang, “An Efficient Batch-Adjustment Algorithm for Artificial Neural Network Structure Adaptation and Applications to Microwave Modeling,” IEEE Microw. Wireless Compon. Lett., vol. 33, no. 8, pp. 1107-1110, Aug. 2023.
[14]J. Cui, F. Feng, J. N. Zhang*, L. Zhu, and Q. J. Zhang, “Bayesian-assisted multilayer neural network structure adaptation method for microwave design,” IEEE Microw. Wireless Compon. Lett., vol. 33, no. 1, pp. 3-6, Jan. 2023.
[15]W. Na, K. Liu, W. Zhang, F. Feng, J. N. Zhang*, H. Xie, D. Jin, and Q. J. Zhang, “Advanced EM optimization using adjoint-sensitivity-based multifeature surrogate for microwave filter design,” IEEE Microw. Wireless Compon. Lett., vol. 34, no. 1, pp. 1-4, Jan. 2024.
[16]L. Ma, Q. J. Zhang, W. Liu, and J. N. Zhang*, “Advances in Hybrid Format-Based Neuro-TF Techniques for Parametric Modeling of Microwave Components,” International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, IJNM, vol. 37, no. 2, pp. 1-23, May 2023.
[17]Weicong Na, J. N. Zhang*, et al., “Parallel EM optimization using improved pole-residue-based neuro-TF surrogate and isomorphic orthogonal DOE sampling for microwave components design,”International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, IJNM, vol. 37, no. 2, pp. 1-16, Jul. 2023.
[18]Q. Ren, Y. Lang, Y. Jia, X. Xiao, Y. Liu, X. Kong, R. Jin, Y. He, J. N. Zhang, J. W. You, W. E.I. Sha, and Y. Pang, “High-Q metasurface signal isolator for 1.5T surface coil magnetic resonance imaging on the go,” Optics Express, vol. 32, no. 6, pp. 8751-8762, Mar. 2024.
[19]F. Feng, J. N. Zhang, J. Jin, W. Na, S. Yan, and Q. J. Zhang, “Efficient FEM-based EM optimization technique using combined Lagrangian method with Newton's method," IEEE Trans. Microw. Theory Techn., vol. 68, no. 6, pp.2194-2205, Jun. 2020.
[20]F. Feng, J. N. Zhang, J. Jin, W. Zhang, Z. Zhao, and Q. J. Zhang, "Adjoint EM sensitivity analysis for fast frequency sweep using Matrix Pade via Lanczos technique based on finite element method," IEEE Trans. Microw. Theory Techn., vol. 69, no. 5, pp. 2413-2428, Mar. 2021. (入选IEEE TMTT Popular Articles)
专利:
[1]一种用于吸波超材料快速设计的特征辅助优化方法, 2024-03-08, 中国, 受理号:CN202410267318.X
[2]电磁场有限元快速频率分析的电磁灵敏度分析方法, 2023-5-2, 中国, 授权号:ZL 2021 1 0992300.2
[3]一种用于求解电磁有限元方程的量子方法, 2022-11-15, 中国, 受理号:CN202211425125.X
[4]一种用于超表面智能设计的物理驱动机器学习方法, 2022-10-11, 中国, 受理号:CN202211239682.2
[5]一种用于两端口微带结构的电磁参数化建模方法,2023-07-31,中国,受理号:CN202310942855.5
[6]基于神经网络传递函数的代理模型建模方法,2023-06-15,中国,受理号:CN202310702791.1
[7]基于空间映射算法的微波元件高频电磁设计方法,2023-08-30,中国,受理号:CN202311105069.6
上传附件
支持扩展名:.rar .zip .doc .docx .pdf .jpg .png .jpeg上传附件
支持扩展名:.rar .zip .doc .docx .pdf .jpg .png .jpeg上传附件
支持扩展名:.rar .zip .doc .docx .pdf .jpg .png .jpeg东南大学研究生院招生办公室
360eol提供技术支持
文件上传中...